Особенности решения задач с параметрами

Страница 3

Если , то решением неравенства относительно будет , а следовательно, исходное неравенство не может иметь единственного решения. (Неравенство при любом имеет бесконечно много решений.) {LINKS}

Значит, и решением относительно будет . Возвращаясь к , будем иметь . Для того чтобы существовало единственное значение , удовлетворяющее последним неравенствам, необходимо и достаточно, чтобы наименьшее значение квадратного трехчлена равнялось бы 4, т.е. .

Ответ. .

6. Найти все значения , при каждом из которых множество решений неравенства не содержит ни одного решения неравенства .

Решение. Нам надо найти все , такие, что при всех имеет место неравенство . Решение последнего неравенства при данном относительно состоит из двух лучей, исключается внутренняя часть отрезка с концами и (какой из них левый, а какой правый‑неважно). Но если меняется от ‑1 до 1, то меняется от 0 до 1, а меняется от 1 до 3. Теперь понятно, что не может принимать значения от 0 до 3, а при всех или заданное условие выполняется.

Ответ. .

Графические методы решения задач с параметрами.

Задачи с параметрами требуют к себе своеобразного подхода по сравнению с остальными – здесь необходимо грамотное и тщательное исследование. Для применения графических методов требуется умение выполнять построение различных графиков, вести графическое исследование, соответствующее данным значениям параметра.

1. При каких значениях параметра уравнение имеет ровно 2 решения?

Решение. Рассмотрим функцию .

Графиком такой функции является ломанная из трех звеньев. Найдем точки излома:

1) ;

2) .

Так как ; , то и ‑ точки излома. Заметим, что , если и имеет минимум в одной из точек или .

С геометрической точки зрения количество решений уравнения ‑ это количество точек пересечения при каждом фиксированном значении параметра ‑ ломанной, состоящей из трех звеньев, и прямой .

По рис. 4 видно, что уравнение имеет ровно 2 решения, если значение в точке минимума меньше 27. Причем значение в другой из точек излома несущественно. Значит необходимо выполнение одного из двух неравенств:

Страницы: 1 2 3 4

Великая педагогика:

Исследование коммуникативных умений у детей с умственной отсталостью в степени дебильности
Исследование проводилось в специальной (коррекционной) общеобразовательной школе – интернате VIII вида. В исследовании принимали участие 15 учеников 1 класса (12 мальчиков, 3 девочки; возраст от 8 до 11 лет) и 15 учеников 4 класса (11 мальчиков, 4 девочки; возраст от 11 до 14 лет). Диагноз: олигофр ...

Внедрение здоровьесберегающих технологий в образовательный процесс школы
Состояние здоровья российских школьников вызывает серьезную тревогу специалистов. Наглядным показателем неблагополучия является то, что здоровье школьников ухудшается по сравнению с их сверстниками двадцать или тридцать лет назад. При этом наиболее значительное увеличение частоты всех классов болез ...

Функции и графики
Пусть даны две переменные х и у. Говорят, что переменная у является функцией от переменной х, если задана такая зависимость между этими переменными, которая позволяет для каждого, значения х однозначно определить значение у. Примеры функций: 1. y = kx+b. 2. у= |х|. 3. у = х2. 4. у= 1/х, х>0 5. у ...

Категории

Copyright © 2025 - All Rights Reserved - www.zelgo.ru