Особенности решения задач с параметрами

Страница 2

Ответ. .

3. При каких значениях параметра квадратное уравнение имеет корни одного знака? {LINKS}

Решение. Так как по условию задачи рассматриваемое уравнение – квадратное, то (иначе формулировка задачи не имеет смысла). Очевидно, условие задачи предполагает также существование корней квадратного уравнения, что означает неотрицательность дискриминанта. Если , то квадратное уравнение имеет один корень (два равных корня).

Так как по условию корни должны быть одинаковых знаков, то

, т.е. .

Решением последнего неравенства является

.

С учетом условий и получим .

Ответ. [7].

4. Для каждого неотрицательного значения параметра решить неравенство .

Решение. Левая часть неравенства представляет собой многочлен как относительно , так и относительно параметра . Степени соответственно равны 4 и 3. Однако если умножить многочлен на , а затем сделать замену , то в новом многочлене максимальная степень параметра будет равна 2. Случай дает нам ответ . Будем теперь считать, что . Умножив обе части неравенства на и сделав замену , получим

.

Левая часть представляет собой квадратный трехчлен относительно :

,

.

Раскрывая левую часть неравенства на множители, получим

,

или

.

Второй множитель положителен при всех , если . Приходим к неравенству , откуда, если , ; если , ‑ любое. Возвращаясь к , получим ответ.

Ответ. Если , то ;

если , то ;

если , то ‑ любое [21].

5. Найти все значения параметра , при которых существует единственное значение , при котором выполняется неравенство

.

Решение. Обозначим () и перейдем к основанию 5. Получим:

.

Функция от , расположенная в числителе, монотонно убывает. Нетрудно подобрать значение , при котором она обращается в нуль:.

Страницы: 1 2 3 4

Великая педагогика:

Историографический анализ состояния исследуемой проблемы
Система образования - это система программирования и перепрограммирования общества. Считается, что именно в возрасте от 7 до 20 лет у среднего человека наиболее просто сформировать базовую платформу мировоззрения из основных достижений человечества. Конец ХХ века - это время информационного взрыва, ...

Практическая работа по развитию интереса младших школьников к предмету музыки
Обучение проводилось по общепринятой программе «Музыка». Работа по развитию интереса к уроку музыки невозможно проводить без предварительного исследования психологической установки учащихся. Для начала было решено понаблюдать за учащимися 4-х классов на уроке музыки, выяснить насколько урок, популя ...

Диагностика и обучение одаренных детей
Итак, по каким же признакам отличить обычного ребенка от гения? Выделяют три особенности одаренного ребенка: Опережающее познавательное развитие. Психо-социальная чувствительность. Одаренные дети, впрочем как и взрослые, обладают повышенным чувством справедливости, чувствительностью, зависимостью о ...

Категории

Copyright © 2025 - All Rights Reserved - www.zelgo.ru