Умение подбирать вспомогательные задачи свидетельствует о том, что учащиеся уже владеют определенным опытом решения нестандартных задач. Если этот опыт невелик, то можно предложить учащимся вспомогательные задачи. Умело поставленные вопросы, вспомогательные задачи помогут понять идею решения. {LINKS}
Необходимо стремиться к тому, чтобы учащиеся испытывали радость от решения трудной для них задачи.
Рассмотрим примеры решения таких задач, с тем, чтобы выяснить особенности процесса их решения.
1. В трех ящиках 300 яблок. Число яблок первого ящика составляет половину числа яблок второго ящика и треть числа яблок третьего ящика. Сколько яблок в каждом ящике?
Решение. Эта задача является текстовой. Для подобных задач никакого общего правила, определяющего точную программу, их решения не существует. Однако это не значит, что вообще нет каких-либо указаний для решения таких задач. Обозначим количество яблок в первом ящике через х. Тогда во втором ящике было 2х яблок, в третьем - 3х. Следовательно, сложив все числа х+2х+3х, мы должны получить 300 яблок. Получаем уравнение х+2х+3х=300.Решив уравнение, найдем: х=50 яблок, 2х=100 яблок, 3х=150 яблок.
Значит, в первом ящике было 50 яблок, во втором ‑ 100 яблок, в третьем ‑ 150 яблок. Проанализируем процесс приведенного решения задачи. Сначала мы определили вид задачи "текстовая задача", и, исходя из этого, возникла идея решения ("составить уравнение").
Для этого, пользуясь общими указаниями и образцами решения подобных задач, полученных на уроках ("надо обозначить одно из неизвестных буквой, например х, и выразить остальные неизвестные через х, затем составить равенство из полученных выражений"), мы построили уравнение.
Заметим, что эти указания, которыми мы пользовались, не являются правилами, ибо в них ничего не сказано, какое из неизвестных обозначить через х, как выразить остальные неизвестные через х, как получить нужное равенство и т.д. Все это делается каждый раз по-своему, исходя из условий задачи и приобретенного опыта решения подобных задач. Полученное уравнение представляет собой уже стандартную задачу. Решив её, мы тем самым решили и исходную нестандартную задачу.
Смысл решения данной задачи состоит в том, что с помощью особого приема (составление уравнения) мы свели её решение к решению стандартной задачи.
2. В магазин "Цветы" привезли 30 желтых тюльпанов и столько же красных. Каждые 3 желтых тюльпана стоили 20 руб., а каждые 2 красных тюльпана стоили 30 руб. Продавец сложила все эти тюльпаны вместе и решила сделать букеты по 5 тюльпанов и продавать их по 50 руб. Правильно ли она рассчитала?
Решение. Найдем стоимость всех тюльпанов, если бы продавец не складывала тюльпаны вместе (реальную стоимость) руб. Найдем стоимость тюльпанов в том случае, когда продавец сложила их по 5 в букеты и стала продавать по 50 руб. (предполагаемая стоимость) руб. Сравниваем реальную и предполагаемую стоимость тюльпанов 650 руб. > 600 руб. Обнаруживаем, что расчет продавца ошибочен, т.к. при сложении всех тюльпанов и продажи их по 5 шт. в букетах она теряет 50 руб.
Процесс решения этой нестандартной задачи состоит в следующем: данную задачу мы разбили на такие подзадачи:
1) нахождение реальной стоимости;
2) нахождение предполагаемой стоимости;
3) сравнение полученных стоимостей и вывод о расчете продавца.
Решив эти стандартные подзадачи, мы в конечном итоге решаем и исходную нестандартную задачу. По мнению Л.М. Фридмана, процесс решения любой нестандартной задачи состоит в последовательном применении двух основных операций:
• сведение (путем преобразования или переформулирования) нестандартной задачи к другой, ей эквивалентной, но уже стандартной (способ моделирования);
• разбиение нестандартной задачи на несколько стандартных вспомогательных подзадач (способ разбиения). Для того чтобы легче было осуществлять способы разбиения и моделирования, мы считаем полезным построение вспомогательной модели задачи ‑ схемы, чертежа, рисунка, графа, графика, таблицы.
Великая педагогика:
Экспериментальная работа по обучению рассказыванию
Результаты констатирующего экспериментального исследования показали, что дети с ОНР III уровня способны к пересказу коротких текстов, составлению рассказов по сюжетным картинкам, к рассказыванию из личного опыта, к рассказыванию по данному началу, но все-таки это еще значительно отличается от связн ...
Понятие способностей
Способности — совокупность врожденных анатомо-физиологических и приобретенных регуляционных свойств, которые определяют психические возможности человека в различных видах деятельности. Каждая деятельность предъявляет комплекс требований к физическим, психофизиологическим и психическим возможностям ...
Понятие экспрессивной лексики
Культура речи является важнейшим условием воспитания общей и внутренней культуры человека. Владение литературным языком, постоянное совершенствование речевых навыков составляет необходимый компонент образованности и интеллигентности. Под культурой речи обычно принято понимать соблюдение норм литера ...