Формула Бейеса
Пусть в условиях рассуждения, относящегося к формуле полной вероятности, произведено одно испытание, в результате которого произошло событие А. Спрашивается: как изменились (в связи с тем, что событие А уже произошло) величины P(Bk), k = 1, . , п. {LINKS}
Найдем условную вероятность РA(Вk).
По теореме умножения вероятностей и формуле (3) имеем:
Отсюда:
Наконец, используя формулу полной вероятности, находим
(k=1, 2, …, n). (7)
Формулу(7) называют формулой Бейеса (Байеса)
Пример. Большая популяция людей разбита на две группы одинаковой численности. Диета одной группы отличалась высоким содержанием ненасыщенных жиров, а диета контрольной группы была богата насыщенными жирами. После 10 лет пребывания на этих диетах возникновение сердечнососудистых заболеваний составило в этих группах соответственно 31% и 48%. Случайно выбранный из популяции человек имеет сердечно-сосудистое заболевание. Какова вероятность того, что этот человек принадлежит к контрольной группе?
Введем обозначения для событий:
А - случайно выбранный из популяции человек имеет сердечно-сосудистое заболевание;
B1 - человек придерживался специальной диеты;
В2 - человек принадлежал к контрольной группе. Имеем
Р(В1) = Р(В2) = 0,5,
(A) = 0,31,
(A) = 0,48.
Согласно формуле полной вероятности
Р(А) = 0,5 ∙ 0,31 + 0,5 ∙ 0,48 = 0,395
и, наконец, в силу формулы (7) искомая вероятность
.
Таким образом, можно привести много разнообразных примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Она занимается математическим анализом случайных событий и связанных с ними случайных величин.
Для решения задач по теории вероятностей следует применять следующие теоремы: сложения вероятностей несовместимых событий, умножения вероятностей, сложений вероятностей совместимых событий; формулы: полной вероятности, Бейеса (Байеса).
Одной из форм дифференцированного обучения по курсу теории вероятностей может являться факультативный курс.
Великая педагогика:
Грядущая реформа русской орфографии
Как известно, населению России грозит орфографическая реформа. Новый закон «О русском языке», проект которого ждет своей очереди в Думе, грозит уголовными наказаниями за безграмотность. Авторы этого законодательного акта не дали себе труда задуматься, что в стране уже действует мощная «орфографичес ...
Классификация и характеристика
подвижных игр
Существует несколько классификаций подвижных игр. Традиционно игры различают по наличию/отсутствию инвентаря, по количеству участников, по степени интенсивности и специфики физической подготовки, наличию/отсутствию ведущего, месту проведения (двор, комната, водоем), по элементам разметки пространст ...
Профессиональное воспитание специалиста по социальной работе
Процесс становления специалиста – сложный, непрерывный процесс проектирования личности. Неотъемлемой частью этого процесса является осведомленность личности о своей будущей профессии, которая способствует развитию активности студента, формированию мотивационной установки в профессиональном обучении ...