Правила и теоремы теории вероятностей

Страница 3

Пример 3. Вероятность выживания одного организма в течение 20 мин Р = 0,7. В пробирке с благоприятными для существования этих организмов условиями находятся только что родившиеся 2 организма. Какова вероятность того, что через 20 минут они будут живы? {LINKS}

Пусть событие А - первый организм жив через 20 мин, событие В - второй организм жив через 20 мин. Будем считать, что между организмами нет внутривидовой конкуренции, т.е. события А и В независимы. Событие, что оба организма живы, есть событие АВ. По теореме 2 получаем Р(АВ) = 0,7 ∙ 0,7 = 0,49 .

Теорема сложения вероятностей совместимых событий

Теорема. Вероятность суммы двух совместимых событий А и В равна сумме вероятностей этих событий минус вероятность их произведения

Р(А + В) = Р(А) + Р(В) - Р(АВ). (5)

Доказательство. Пусть из всего числа n элементарных событий k благоприятствуют событию А, l - событию В и m - одновременно событиям А и В. Отсюда событию А + В благоприятствуют к + 1 - m элементарных событий. Тогда

Р(А+В)= = Р(А) + Р(В) - Р(АВ)

Замечание. Если события А и В несовместимы, то их произведение АВ есть невозможное событие и, следовательно, Р(АВ) = 0, т.е. формула (1) является частным случаем формулы.

Пример. В посевах пшеницы на делянке имеется 95% здоровых растений. Выбирают два растения. Определить вероятность того, что среди них хотя бы одно окажется здоровым.

Введем обозначения для событий:

А1- первое растение здоровое;

А2 - второе растение здоровое;

А1+A2 - хотя бы одно растение здоровое.

Так как события А1 и А2 совместимые, то согласно формуле (5)

P(А1+ А2) = P(А1) + P(А2) = 0,95 + 0,95 - 0,95 · 0,95 = 0,9975 ≈ 1 .

Формула полной вероятности

Теорема. Вероятность события А, которое может нacmупить лишь при условии появления одного из n попарно несовместимых событий В1, В2, . Вn , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

(6)

(формула полной вероятности).

Доказательство. Событие А может наступить лишь при условии наступления одного из событий B1, В2, ., Bn, т.е. А = B1 А + В2А + . +, BnА причем ввиду несовместимости событий B1, В2 , ., BnА события B1А, В2А, ., BnА также несовместимы. По этому на основании теорем сложения и умножения вероятностей имеем

Пример 1. Имеются три одинаковых по виду ящика. В первом находят две белые мыши и одна серая, во втором - три белые и одна серая, в третьей две белые и две серые мыши. Какова вероятность того, что из наугад выбранного ящика будет извлечена белая мышь?

Обозначим: B1 - выбор первого ящика, B2 - выбор второго ящика, В3 - выбор третьего ящика, А - извлечение белой мыши. Так как все ящики одинаковы, то P(В1)= Р(В2) = Р(В3) =.

Если выбран первый ящик, то (А) = . Аналогично (А) = , (A) = . Наконец, по формуле (6) получаем [8, 22].

Страницы: 1 2 3 4

Великая педагогика:

Сущностно-содержательная характеристика понятий «творческая активность», «развитие творческой активности» в контексте психолого-педагогических исследований
Изучение любой проблемы связано с уточнением предмета исследования, выявлением его сущностных характеристик. В данном параграфе мы выясним, что представляет собой творческая активность учащегося, каковы её специфические особенности. Исследование творческой активности учащихся – проблема сложная и п ...

Формирование навыков межличностного взаимодействия у детей младшего и среднего дошкольного возраста
Работа воспитателя многогранна. В процессе обучения детей воспитатель использует различные формы, виды и содержания работы, и вся его деятельность (здесь имеется в виду именно роль и место воспитателя в системе взаимодействия всех участников образовательного процесса в целом) направлена на всесторо ...

Методика решения уравнений и неравенств
Уравнения и неравенства ‑ традиционная тема школьного курса математики, занимающая большое место, начиная с младших классов, где простейшие уравнения и неравенства до введения теории на основе свойств арифметических действий, и кончая старшими классами, где решаются трансцендентные уравнения. ...

Категории

Copyright © 2024 - All Rights Reserved - www.zelgo.ru