Направленность процесса обучения математике в начальных классах на формирование основных мыслительных операций позволяет включить интеллектуальную деятельность младшего школьника в различные соотношения с другими сторонами его личности, прежде всего с мотивацией и интересами, оказывая тем самым положительное влияние на развитие внимания, памяти (двигательной, образной, вербальной, эмоциональной, смысловой), эмоции и речи ребенка. {LINKS}
Практическая реализация концепции находит выражение:
в логике построения содержания курса, в основе, которой лежит система математических понятий и общих способов действий;
в методическом подходе к формированию понятий и общих способов действий, в основе которого лежит установление соответствия между предметными - вербальными - схематическими и символическими моделями;
в системе учебных заданий, которая адекватна концепции курса, логике построения его содержания и нацелена на осознание школьниками учебных задач, на овладение способами их решения и на формирование у них умения контролировать и оценивать свои действия.
В связи с этим процесс выполнения учебных заданий носит продуктивный характер, который исходя из психологических особенностей младших школьников определяется соблюдением баланса между логикой и интуицией, словом и наглядным образом, осознанным и подсознательным, догадкой и рассуждением.
В процесс выполнения учебных заданий включается и репродуктивная деятельность, которая связана с использованием необходимой математической терминологии для объяснения выполняемых действий, с вычислениями, с усвоением определенных правил. Но при этом даже выполнение вычислительных упражнений обязательно сопровождается выявлением определенных зависимостей, связей, закономерностей. Для этого в заданиях специально подбираются математические выражения, при анализе которых дети используют математические понятия, свойства и приемы умственных действий. Это способствует не только быстрому формированию вычислительных умений и прочных вычислительных навыков, но и повышению уровня вычислительной культуры обучающихся.
В предлагаемом курсе дети сначала усваивают (или уточняют, если они пришли в школу подготовленными в этом плане) последовательность слов-числительных, которой можно пользоваться для счета предметов. Затем овладевают операцией счета, т.е. устанавливают взаимно однозначное соответствие между предметом и словом-числительным. Заменяя слова-числительные знаками (в произвольном порядке), обучающиеся знакомятся с цифрами и учатся красиво писать их. Можно, например, начать с цифры 1, затем научиться писать цифры 4, 7, 6, 9 и т.д.
В теме "Однозначные числа" учащиеся знакомятся с отрезком натурального ряда чисел от 1 до 9. Пересчитывая предметы данной совокупности и заменяя слова-числительные соответствующими знаками (цифрами), они получают ряд чисел, которым можно пользоваться для счета предметов. Принцип построения этого ряда осознается детьми в процессе выполнения различных заданий, которые связаны с операцией счета, присчитывания и отсчитывания.
Знакомство обучающихся с лучом, отрезком и способом измерения длины с помощью различных мерок позволяет ввести понятие числовой луч и использовать его как наглядное средство для сравнения чисел, а затем для их сложения и вычитания.
В качестве математической основы разъяснения смысла, сложения выступает теоретико-множественная трактовка суммы как объединения множеств, не имеющих общих элементов. Она легко переводится на язык предметных действий, что позволяет при формировании представлений о смысле сложения опираться на опыт детей, активно используя счет и операции присчитывания и отсчитывания.
Для разъяснения смысла сложения используется идея соответствия предметного действия его словесному описанию и математической записи, которые интерпретируются на числовом луче. Для чтения математических записей вводится терминология: выражение, равенство, слагаемые, значение суммы, употребление которой позволяет исключить такой термин, как примеры. Интерпретация сложения на числовом луче помогает ребенку абстрагироваться от предметных действий.
Великая педагогика:
Влияние мотивации на учебный процесс
Поскольку в рамках нашего исследования проверяется гипотеза о связи мотивации с уверенностью в знаниях, существует необходимость рассмотреть это понятие в теоретическом анализе дипломной работы. Существует большое количество разновидностей мотивации, но мы подробнее остановимся только на внутренней ...
Функционально-ролевой репертуар специалиста по социальной работе
Конкретизация деятельности специалиста по социальной работе вытекает из его основных функций. (по В.Г .Бочаровой, Е.И. Холостовой), которые раскрывают специфические особенности социальной работы как профессии. Диагностическая функция предполагает изучение социальным работником особенностей семьи, г ...
Разработка адаптированных подвижных игр
Для проведения подвижных игр дети уже должны быть знакомы с помещением спортивного зала, знать, что ковер на полу ограничивает безопасную площадь игры, и, если ноги сошли с ковра, нужно вернуться и быть осторожным. Также дети уже знакомы со спортивным реквизитом. Но нужно еще раз отобрать, осмотрет ...