Из приведенного классического определения вероятности вытекают следующие ее свойства.
Свойства классического определения вероятности
1. Вероятность достоверного события равна единице. Действительно, достоверному событию должны благоприятствовать все n элементарных событий, т.е. m = n и, следовательно, {LINKS}
Р(А)= ==1.
2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприятствовать ни одно из элементарных событий, т.е. m = 0, откуда
Р(А)= ==0.
3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.
Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных событий. Поэтому в этом случае 0 < m < n и, значит, 0 < < 1. Следовательно, 0 < Р(А) < 1.
Итак, вероятность любого события удовлетворяет двойному неравенству, 0 Р(А) 1.
Статистическое определение вероятности
Классическое определение вероятности не является пригодным для изучения произвольных случайных событий. Так, оно неприемлемо, если результаты испытания не равновозможны. Например, при бросании неправильной игральной кости выпадение ее различных граней не равновозможно.
В таких случаях используется, так называемое, статистическое определение вероятности.
Пусть произведено n испытаний, при этом некоторое событие А наступило m раз (m < n).
Число m называют абсолютной частотой (или просто частотой) события А, а отношение Р*(А) = называют относительной частотой события А.
При транспортировке из 10 000 арбузов испортилось 26. Здесь m = 26 - абсолютная частота испорченных арбузов, а Р*(А) = = 0,0026 - относительная.
Результаты многочисленных опытов и наблюдений помогают заключить: при проведении серий из n испытаний, когда число сравнительно мало, относительная частота Р*(А) принимает значения, которые могут довольно сильно отличаться друг от друга. Но с увеличением n - числа испытаний в сериях – относительная частота Р*(А) = приближается к некоторому числу Р(А), стабилизируясь возле него и принимая все более устойчивые значения.
Было проведено 10 серий бросаний монеты, по 1000 бросаний в каждой. Относительные частоты выпадения герба оказались равными 0,501 0,485; 0,509; 0,536; 0,485; 0,488; 0,500; 0,497; 0,494; 0,484. Эти частота группируются около числа 0,5.
По официальным данным шведской статистики относительные частоты рождения девочек по месяцам 1935 г. характеризуются следующими числами (расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,47. Эти частоты группируются около числа 0,482.
Относительная частота события приближенно совпадает с его вероятностью, если число испытаний достаточна велико. Имеется огромный опытный материал по проверке последнего утверждения. Укажем еще один такой пример с бросанием монеты.
Великая педагогика:
Организация содержания игр и упражнений для развития сенсорной сферы детей
младшего дошкольного возраста
Сенсорное воспитание – это развитие восприятия ребенком и формирование представлений о внешних свойствах и качествах предметов: форме, цвете, величине, положении в пространстве, запахе, вкусе и так далее. С восприятия предметов и явлений окружающего мира начинается познание ребенка. Поэтому нормаль ...
Особенности развития познавательной активности детей дошкольного возраста
Дошкольное детство - длительный период, закладывающий фундамент будущей личности и во многом ее определяющий. Как отмечает Е.А. Аркин, это период, когда « .и семья, и общество создает для ребенка все необходимые и возможные условия ." для их развития. Именно дошкольное детство является периодо ...
Классификация технологий. Общая характеристика гуманитарных технологий
В современной научно-теоретической литературе и практической деятельности выдающихся отечественных педагогов выделяются три основных вида технологий: технические, экономические и гуманитарные. Гуманитарные технологии подразделяются на управленческо-гуманитарные (человековедческие), педагогические и ...