Предмет теории вероятностей

Страница 3

Достоверное и невозможное события в данном испытании являются противоположными.

Событие А называют случайным, если оно объективно может наступить или не наступить в данном испытании.

Событие А6 - выпадение шести очков при бросании игральной кости - случайное. Оно может наступить, но может и не наступить в данном испытании. {LINKS}

Всякое испытание влечет за собой некоторую совокупность исходов - результатов испытания, т.е. событий. Во многих случаях возможно перечислить все события, которые могут быть исходами данного испытания.

Классическое определение вероятности

Говорят, что совокупность событий образует полную группу событий для данного испытания, если его результатом обязательно становится хотя бы одно из них.

Примеры полных групп событий: выпадение герба и выпадение цифры при одном бросании монеты; попадание в цель и промах при одном выстреле; выпадение одного, двух, трех, четырех, пяти и шести очков при одном бросании игральной кости.

Рассмотрим полную группу попарно несовместимых событий U1, U2, ., Un, связанную с некоторым испытанием. Предположим, что в этом испытании осуществление каждого из событий , (i = 1,2, ., n) равновозможное, т.е. условия испытания не создают преимущества в появлении какого-либо события перед другими возможными.

События U1, U2, ., Un, образующие полную группу попарно несовместимых и равновозможных событий, называется элементарными событиями.

Вернемся к опыту с подбрасыванием игральной кости. Пусть - событие, состоящее в том, что кость выпала гранью с цифрой 1. События U1 , U2, . , U6 образуют полную группу попарно несовместимых событий. Так как кость предполагается однородной и симметричной, то события U1 , U2, . , U6 являются и равновозможными, т.е. элементарными.

Событие А называют благоприятствующим событию В, если наступление события А влечет за собой наступление события В.

Пусть при бросании игральной кости события U2, U4, и U6 -появление соответственно двух, четырех и шести очков и А - событие, состоящее в появлении четного числа очков; события U2, U4 и U6 благоприятствуют событию А.

Вероятностью Р(А) события А называют отношение числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т.е.

Р(А)= .

Вычислим вероятность выпадения герба при одном бросании монеты. Очевидно, событие А - выпадение герба и событие В — выпадение цифры образуют полную группу несовместимых и равновозможных событий для данного испытания. Значит, здесь n = 2. Событию А благоприятствует лишь одно событие - само А, т.е. здесь m = 1. Поэтому

Р(А) = .

Найти вероятность того, что при бросании игральной кости выпадет число очков, делящееся на 2 (событие А).

Число элементарных событий здесь 6. Число благоприятствующих элементарных событий 3 (выпадение 2, 4 и 6). Поэтому Р(А)== .

Страницы: 1 2 3 4 5

Великая педагогика:

Содержание и формы обучения младших школьников на уроке
В наши дни существенно изменился подход к пониманию цели обучения школьников. Это связано с тем, что ни в отечественной, ни в зарубежной педагогической практике не известны примеры удачной реализации цели формирования и развития личности. Анализ психолого-педагогической литературы показал, что «отн ...

Педагогические рекомендации для работников ДОУ по использованию художественной литературы для развития количественных представлений 5-го года жизни
Иногда дошкольники, хорошо понимая условность художественного произведения, как бы «отстраняются» от него, от его персонажей, от их бед и страданий. Такой уход, с одной стороны, способствует сохранению жизнерадостного, безмятежного, ничем не омраченного эмоционального состояния; с другой - дети, не ...

Социальная работа - принципиально новый вид социальной деятельности
Чтобы понять сущность и содержание, структуру и функции социальной работы необходимо дать определение понятия «деятельность». Деятельность - способ существования и развития социальной действительности, проявление социальной активности, целенаправленного отражения и преобразования окружающего мира. ...

Категории

Copyright © 2025 - All Rights Reserved - www.zelgo.ru