Мотив изучения и необходимость доказательства теоремы показаны.
Прием 3. Показ необходимости знания той или иной теоремы для решения задач и доказательства других теорем.
Например, перед доказательством теоремы «В равнобедренном треугольнике углы при основании равны» учащимся предлагается решить задачу: {LINKS}
В равнобедренном треугольнике АВС (АВ=ВС) вершина угла В соединена с серединой К стороны АС отрезком. Докажите, что треугольники АВК и СВК равны. Достаточно ли этих данных, чтобы установить равенство названных треугольников.
Так как третьего признака равенства по трем сторона у учащихся пока нет, то данную задачу они решить не могут. Созданная проблемная ситуация позволяет сразу мотивировать необходимость изучения сразу трех теорем : «В равнобедренном треугольнике углы при основании равны», «В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой», «Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны».
Прием 4. Показ, как решалась данная проблема в истории науки.
Например, перед изучением второго признака равенства треугольников, можно привести историческую справку.
|
|
|
|
Пусть А – точка берега (рис.2), В – корабль на море. Для определения расстояния АВ восстанавливают на берегу перпендикуляр произвольной длины: АС⊥АВ; в противоположном направлении восстанавливают СЕ⊥АС так, чтобы точка Д (середина АС), В и Е находились на одной прямой. Тогда СЕ будет равна искомому расстоянию АВ.[4]
После этой справки учитель задает вопрос, а прав ли Фалес, утверждая, что СЕ=АВ. Ответы учеников могут разделиться. Далее учитель вводит теорему: «Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны». Пользуясь данной теоремой, ученики без труда ответят, что треугольники АВД и СЕД равны, а значит и соответственные стороны АВ и СЕ равны.
Проследим мотивационный этап работы над теоремой на примере теоремы: «В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой».
Один из приемов мотивации изучения данной теоремы – знание теоремы для решения задач.
|
|
![]() | |||
![]() | |||
Великая педагогика:
Урок с использованием компьютерного тестирования
Компьютерное тестирование само по себе нетрадиционно, т.к. все мы привыкли к тестам, выполненным на бумаге. По сравнению с традиционными формами контроля компьютерное тестирование имеет ряд преимуществ: быстрое получение результатов; объективность в оценке знаний; позволяет получить достоверную инф ...
Система высшего образования
Сегодня голландская система высшего образования находится в процессе преобразований, обусловленных Болонским процессом, хотя исторически она далека от Болонской модели (двухуровневая система «бакалавриат - магистратура», единая система зачетных кредитов, высокая степень автономии вузов). Ее отличаю ...
Взаимосвязь речевого развития и развития произвольного поведения у
дошкольников
Наиболее универсальной системой знаковых средств является речь. Поэтому центральной линией развития произвольного поведения у Л.С. Выготского является развитие речевого опосредования. Он пишет: «С помощью речи в сферу объектов, доступных для преобразования ребёнком, включается его собственное повед ...