3. Сколько всего различных незамкнутых ломаных можно построить с вершинами в точках A, B, C, D на рисунке?
![]() |
Задача 3 – это фактически задача на перебор вариантов. Ее цель состоит в том, чтобы дать учащимся возможность накопить некоторый опыт по подсчету числа вариантов и по построению дерева вариантов.
После обсуждения ответов и решений учащихся учитель может сказать примерно следующее:«Вы получили разные ответы, но никто не смог доказать, что он перебрал все
возможные случаи. Давайте попробуем разработать такой способ подсчета, при котором можно быть уверенным в том, что мы перебрали все возможные варианты.» Тогда словосочетание «перебор … вариантов» появляется в таком контексте, что смысл его объяснять не надо, тем более, что используемые слова учащимся к этому моменту уже знакомы из других жизненных ситуаций.
Далее учащимся предлагается сначала посчитать, сколько можно построить ломаных с началом в точке А. Рассуждаем так: из точки А можно пойти в точку B или в точку C или в точку D. Чтобы ничего не пропустить, сделаем рисунок:
Теперь подумаем, куда мы можем пойти из точки B, из точки C, из точки D, и т.д. В результате рассуждений получаем такой рисунок.
![]() |
«Итак, мы видим, что можно построить 6 ломаных с началом в точке A. Как вы думаете, сколько всего ломаных мы получим, если проделаем такую же работу с остальными точками? Проверьте свое предположение дома».
Здесь работа над задачей в классе заканчивается и учащимся предлагается закончить ее дома: изобразить все ломаные с началом в точке A и, рассуждая аналогично (сделав такой же рисунок), выписать и изобразить все ломаные с началом в точках B, C и D. В процессе выполнения этой работы учащиеся заметят, что каждая ломанная повторяется дважды, поскольку, например, ABCD и DCBA – это одна и та же ломаная. Поэтому всего различных ломаных получится не , а вдвое меньше – 12.
Далее учащимся предлагается дома на альбомном листе изобразить все 12 ломаных.
4. Изобразите отрезок MN. Отметьте на нем точки K и L так, чтобы отрезок KN составлял , а отрезок ML –
отрезка MN. Какую часть отрезков MN, NK, ML, MK и NL составляет отрезок KL? Прежде чем решать задачу подумайте, какой длины удобно взять отрезок MN.
Подсказка содержится в тексте задачи. Учащимся предлагается в классе прочитать первые два предложения и подумать над подсказкой.
Изобразим отрезок и отметим на нем точки. Отрезок KL составляет длины отрезка MN,
длины отрезка NK,
длины отрезка ML, 1
длины отрезка MK, 1
длины отрезка NL.
![]() |
5. Решите задачу подбором. Из 29 коробок часть содержит по 14 кг конфет, а часть по 15 кг. Сколько тех и других коробок, если общая масса конфет в коробках обоих типов одинаковая?
Внимательно изучив данные, видим, что 14 + 15 = 29. Значит коробок, в которых по 14 кг должно быть 15, а тех, в которых по 15 кг – 14.
6. Пассажир поезда, идущего со скоростью 50 км/ч, заметил, что встречный поезд шел мимо него в течение 10 секунд. Определите длину встречного поезда, если его скорость – 58 км/ч.
Великая педагогика:
Формы мышления
В психологической науке различают такие формы мышления, как: · понятия; · суждения; · умозаключения. Понятие - это отражение в сознании человека общих и существенных свойств предмета или явления. Понятие — это форма мышления, в которой отражаются общие и притом существенные свойства предметов и яв ...
Логопедическое обследование детей с общим недоразвитием речи старшей группы
специального детского сада
Целью логопедического обследования является выявление нарушений у детей с общим недоразвитием речи и последующая помощь в преодолении этих нарушений Задачи: -сбор анамнестических данных; -обследование речевых и неречевых функций; -постановка логопедического заключения; -составление перспективного п ...
Диалог как первичная форма речевой коммуникации
Диалог - это разговор двух или нескольких лиц. Диалог (от греческого разговор, беседа) – форма речи, состоящая из регулярного обмена высказываниями-репликами, на языковой состав которых взаимно влияет непосредственное восприятие речевой деятельности говорящих. Основной единицей диалога является диа ...